Artificial Intelligence - هوش مصنوعی  
انجمن را در گوگل محبوب کنيد :

بازگشت   Artificial Intelligence - هوش مصنوعی > یادگیری (Learning) > درختان تصميم گيري طبقه بندي و رگرسيوني


 
تبليغات سايت
Iranian Association for the Advancement of Artificial Intelligence
ارسال تاپيک جديد  پاسخ
 
LinkBack ابزارهاي تاپيک نحوه نمايش
قديمي ۰۳-۱۶-۱۳۸۹, ۰۲:۴۰ بعد از ظهر   #1 (لینک دائم)
عضو جدید
 
آواتار arsalan_4421
 
تاريخ عضويت: ارديبهشت ۱۳۸۹
پست ها: 8
تشكرها: 0
0 تشكر در 0 پست
پيش فرض reg tree

به دلایل زیر کار بامدل درختی پیشنهاد می شود : 1- این مدل به طور مستقیم با متغیر های پیش بینی کننده مرتبط می باشد بنابراین نتایج مدل برای فهمیدن و شبیه سازی آسان هستند .
2- درخت های تصمیم گیری غیر پارامتریک بوده و هیچ دخالتی از سوی کاربر بر روی آنها صورت نمی گیرد .
3- خروجی مدل از دقت بالای برخوردار است که می توان آن را با سایر مدل ها مقایسه کرد .
درخت تصمیم چیست ؟
یک درخت معمولا از ریشه (root) ، شاخه (beach) ، گره ها (nods) ، برگها (leaf) تشکیل شده است درخت تصمیم هم به طور مشابه از گره ها که با دایره نشان داده می شوند و شاخه ها که نشان دهنده اتصال بین گره ها می باشند ، تشکیل شده است . درخت تصمیم به منظور سادگی در رسم معمولا از چپ به راست و یا از بالا به پایین کشیده می شود به طوری که ریشه (گره اول را ریشه می گویند) در بالا قرار گیرد . انتهای یک زنجیره ریشه ، شاخه، گره را یک برگ می نامند . از هر یک از گره های داخلی (یعنی گره ای که برگ نباشد) دو یا چند شاخه دیگر می توانند منشعب شوند . هر گره مربوط به یک خصوصیت معین است وشاخه ها به معنای بازه ای از مقادیر هستند ، این بازه های مقادیر ، باید بخش های مختلف مجموعه مقادیر معلوم را برای خصوصیت ها به دست دهند . عمل انشعاب توسط یکی از متغیرهای پیش بینی کننده انجام می پذیرد ، بازه های انشعاب طوری انتخاب می شوند که مجموع مجذور انحراف از میانگین داده های هر گره را حداقل کنند .
هنگامي كه خروجي يك درخت، يك مجموعه گسسته از يك مجموعه مقادير ممكن است؛ به آن طبقه بندی درختی گفته مي شود (مثلا مونث یا مذکر،برنده یا بازنده) هنگامي كه بتوان خروجي درخت را يك عدد حقيقي در نظر گرفت آن را، رگرسیون درختی مي نامند ویا به عبارت دیگر اگر متغیر های ما عددی (numerical) باشند از رگرسیون درختی (regression tree) واگر مطلق و قیاسی باشند از طبقه بندی درختی(classification tree) استفاده می کنیم . فرایند انشعاب در هر گره بارها تکرار می شود تا به گره پایانی یا همان برگ برسد که در برگ مجموع مجذور انحراف از میانگین داده ها حدودا به صفر می رسد ، با این کار درخت بزرگی توسعه پیدا خواهد کرد . فرآیند تشکیل دادن رگرسیون درختی شامل 5 مرحله است .
1)- مرحله مقدار دهی اولیه (initialization) : در این مرحله متغیر های پیش بینی کننده انتخاب شده و فرایند پیش پردازی داده ها انجام می گیرد .
2)- ساختن درخت (tree building) : این مرحله با تقسیم شدن گره والد به دو گره فرزند شروع می شود ، در هر گره والد تمام موضوعات و انشعابات ممکن ارزیابی می شود و سر انجام بهترین انشعاب انتخاب می شود


بهترین انشعاب انشعابی است که بیشترین مقدار را داشته باشد . با تکرار پروسه بالا برای هر انشعاب درخت بزرگی شکل می گیرد که به درخت حداکثر (maximal tree ) معروف است که شاخه ها و گره های زیادی دارد و کار با آن سخت می باشد بنابراین برای رسیدن به یک درخت بهینه و کار آمد باید شاخه های اضافی را هرس کرد .
3)- هرس کردن درخت (tree pruning) : دو روش حرص وجود دارد 1- هرس قبل از شکل گیری درخت حداکثر (pre-pruning) 2- هرس بعد از شکل گیری درخت حداکثر (past-pruning)
در روش اول فرایند هرس اجازه نمی دهد شاخه های اضافی تولید شوند ولی در روش دوم ابتدا درخت حداکثر تشکیل می شود و سپس فرآیند هرس انجام می گیرد . در این طرح از یکی از تکنیک های روش دوم به نام هزینه پیچیدگی هرس (cost complexity pruning ) استفاده می شود( بریمان و همکاران 1984).
4)- انتخاب درخت بهینه (optimal tree selection) : درخت بهینه بر اساس حداقل کردن خطای پیش بینی انتخاب می شود که دو روش برای محاسبه خطای پیش بینی وجود دارد 1- آزمون دستگاه مستقل 2- آزمون صحت سنجی که روش اول هنگامی مورد استفاده قرار می گیرد که تعداد داده های زیادی داشته باشیم در غیر آین صورت از روش دوم استفاده می شود .

ويرايش شده توسط arsalan_4421; ۰۳-۱۶-۱۳۸۹ در ساعت ۰۳:۰۷ بعد از ظهر
arsalan_4421 آفلاين است   پاسخ با نقل قول

  #ADS
نشان دهنده تبلیغات
تبليغگر
 
 
 
تاريخ عضويت: -
محل سكونت: -
سن: 2010
پست ها: -
 

نشان دهنده تبلیغات is online  
قديمي ۰۳-۱۶-۱۳۸۹, ۰۲:۴۸ بعد از ظهر   #2 (لینک دائم)
عضو جدید
 
آواتار arsalan_4421
 
تاريخ عضويت: ارديبهشت ۱۳۸۹
پست ها: 8
تشكرها: 0
0 تشكر در 0 پست
پيش فرض

من این مطالب را تونستم از منابع لاتین در بیاورم اما وقعا اینا را هنوز یاد نگرفتم
arsalan_4421 آفلاين است   پاسخ با نقل قول
قديمي ۰۲-۱۷-۱۳۹۰, ۰۱:۳۲ بعد از ظهر   #3 (لینک دائم)
عضو جدید
 
آواتار rojiar
 
تاريخ عضويت: دي ۱۳۸۸
پست ها: 2
تشكرها: 0
0 تشكر در 0 پست
پيش فرض

با سلام
ممنون از توضیحاتتون
من برای تخمین نرخ برگشت وام های بانک ها می خوام از روش رگزسیون درختی استفاده کنم، با کاربرد طبقه بندی درختی با استفاده از نرم افزار داده کاوی clemntine آشنا هستم با درخت رگسیون و اینکه با استفاده از چه نرم افزارها و روش هایی پیاده سازی می شه آشنایی ندارم اگر دز این مورد راهنمایی کنید و یا اگر منابعی در اختیار دارید برای من ارسال کنید ممنون می شمو با تشکر
rojiar.py@gmail
rojiar آفلاين است   پاسخ با نقل قول
پاسخ



كاربران در حال ديدن تاپيک: 1 (0 عضو و 1 مهمان)
 

قوانين ارسال
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is فعال
شکلکها فعال است
كد [IMG] فعال است
كدهاي HTML غير فعال است
Trackbacks are فعال
Pingbacks are فعال
Refbacks are فعال




زمان محلي شما با تنظيم GMT +3.5 هم اکنون ۰۸:۱۹ قبل از ظهر ميباشد.


Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.1.0 ©2007, Crawlability, Inc.

Teach and Learn at Hexib | Sponsored by www.Syavash.com and Product In Review

استفاده از مطالب انجمن در سایر سایت ها، تنها با ذکر انجمن هوش مصنوعي به عنوان منبع و لینک مستقیم به خود مطلب مجاز است

Inactive Reminders By Icora Web Design