با سلام و وقت بخیر ممنون میشم منبع و درصورت بودن مقالاتی که این متن از آن برداشت شده اند بفرمایید،خیلی ضروریه برام ،با تشکر فراوان
http://artificial.ir/intelligence/thread1464.html
مقدمهاي بر خوشهبندي
خوشهبندي را ميتوان به عنوان مهمترين مسئله در يادگيري بدون نظارت در نظر گرفت. خوشهبندي با يافتن يک ساختار درون يک مجموعه از دادههاي بدون برچسب درگير است. خوشه به مجموعهاي از دادهها گفته ميشود که به هم شباهت داشته باشند. در خوشهبندي سعي ميشود تا دادهها به خوشههايي تقسيم شوند که شباهت بين دادههاي درون هر خوشه حداکثر و شباهت بين دادههاي درون خوشههاي متفاوت حداقل شود.
شکل 1: در اين شکل نمونهاي از اعمال خوشهبندي روي يک مجموعه از دادهها مشخص شده است که از معيار فاصله(Distance) به عنوان عدم شباهت(Dissimilarity) بين دادهها استفاده شده است.
خوشهبندي در مقابل طبقهبندي
در طبقهبندي هر داده به يک طبقه (کلاس) از پيشين مشخص شده تخصيص مييابد ولي در خوشهبندي هيچ اطلاعي از کلاسهاي موجود درون دادهها وجود ندارد و به عبارتي خود خوشهها نيز از دادهها استخراج ميشوند. در شکل زير تفاوت بين خوشهبندي و طبقهبندي بهتر نشان داده شده است.
ایرانی2017 آنلاين است ارجاع دادن پيام