نمايش پست تنها
قديمي ۱۱-۱۸-۱۳۹۶, ۱۰:۳۱ بعد از ظهر   #5 (لینک دائم)
site2017 Male
عضو فعال
 
آواتار site2017
 
تاريخ عضويت: مهر ۱۳۹۶
پست ها: 10
تشكرها: 0
0 تشكر در 0 پست
پيش فرض

کاربر دها
ساخت سايت
 کاربرد الگوریتم های ژنتیک بسیار زیاد میباشد
optimization,
automatic programming,
machine learning,
economics,
operations research,
ecology,
studies of evolution and learning, and
social systems


زیر شاخه های EA
روش های EA به دو نوع مرتبط به هم ولی مجزا دسته بندی
میشوند :
.1Genetic Algorithms (GAs)
در این روش راه حل یک مسئله بصورت یک bit string
نشان داده میشود .
.2Genetic Programming (GP)
این روش به تولید expression trees که در زبانهای برنامه
نویسی مثل lisp مورد استفاده هستند میپردازد بدین ترتیب
میتوان برنامه هائی ساخت که قابل اجرا باشند .


الگوریتم های ژنتیک
 روش متداول پیاده سازی الگوریتم ژنتیک بدین ترتیب است که :
 مجموعه ای از فرضیه ها که population نامیده میشود تولید وبطور
متناوب با فرضیه های جدیدی جایگزین میگردد .
 در هر بار تکرارتمامی فرضیه ها با استفاده از یک تابع تناسب یا
Fitness مورد ارزیابی قرار داده میشوند . آنگاه تعدادی از بهترین
فرضیه ها با استفاده از یک تابع احتمال انتخاب شده و جمعیت جدید را
تشکیل میدهند .
 تعدادی از این فرضیه های انتخاب شده به همان صورت مورد استفاده
واقع شده و مابقی با استفاده از اپراتورهای ژنتیکی نظیر Crossover
و Mutation برای تولید فرزندان بکار میروند .

منبع : matlabdl
site2017 آفلاين است   پاسخ با نقل قول