تاپيک: Sift و svm
نمايش پست تنها
قديمي ۰۶-۲۶-۱۳۹۲, ۱۰:۵۲ بعد از ظهر   #20 (لینک دائم)
s.b Female
عضو فوق فعال
 
آواتار s.b
 
تاريخ عضويت: فروردين ۱۳۹۰
محل سكونت: iran
پست ها: 22
تشكرها: 19
1 تشكر در 1 پست
My Mood: Mehrabon
پيش فرض

نقل قول:
نوشته اصلي بوسيله raha_hakhamanesh نمايش پست
به نام خدا
خب در حقیقت تفاوت های پردازش تصویر و بینایی کامپیوتر در چنین مواردی مشخص می شود.
شما نیاز ندارید به اینکه موقعیت نقاط را داشته باشید این روش مبتنی بر یادگیری است.

در واقع شما دارید نمونه هایی را به SVM می دهید که می گوید سطح مورد نظر دارای عیب است. وقتی می خواهید با SVM کار کنید باید نمونه ها را تفکیک کنید مثلا نمونه معیوب و نمونه سالم. خب پس دو ماتریس خواهید داشت ماتریس اول مربوط به نمونه های سالم و ماتریس دوم مربوط به نمونه های معیوب. که این ماتریس ها توسط یک توصیف کننده مثل SIFT تولید شده اند.

مثال:

كد:
A is a Matrix [1000, 128] of good surfaces B is a Matrix[5000, 128] of bad surfaces TestData = [A, B] TestLbl=[1 for A, -1 for B]
training_instance_matrix = TestData; training_label_vector = TestLbl; model = svmtrain(training_label_vector, training_instance_matrix, ['-t 0']); %================================== testing_instance_matrix = TestData; testing_label_vector = TestLbl; [predicted_label, accuracy, decision_values] = svmpredict(testing_label_vector, testing_instance_matrix, model);
با سلام مجدد.
ببخشید مگر تابع svmpredict روی تصاویر تست اعمال نمی شود... در تصاویر تست هم که ما می خواهیم تابع خودش تشخیص دهد تصویر معیوب است یا خیر پس LABEL را که ما نمی توانیم بدهیم... مگر خود این تابع نباید LABEL را برای ما مشخص کند؟؟؟؟؟
s.b آفلاين است   پاسخ با نقل قول