نمايش پست تنها
قديمي ۰۲-۲۱-۱۳۹۲, ۱۰:۲۵ بعد از ظهر   #6 (لینک دائم)
babak_1234 Male
Moderator
 
آواتار babak_1234
 
تاريخ عضويت: شهريور ۱۳۸۸
محل سكونت: تهران
پست ها: 252
تشكرها: 1
140 تشكر در 108 پست
My Mood: Khonsard
پيش فرض

نقل قول:
نوشته اصلي بوسيله afshin051 نمايش پست
با سلام و خسته نباشید
من دارم روی یک پروژه داده کاوی پیش بینی با استفاده از شبکه های عصبی کار میکنم
سوال من اینه که با چه دستور و کدی میتونم میزان تاثیر ویژگی ها یا همون داده های ورودی روی خروجی و نتیجه بدست بیارم ؟
یعنی من الان نتیجه گرفتم فقط می خوام تاثیر هر ویژگی یا همون فیلد ورودی روی نتیجه پیش بینی بدست بیارم
مثلا من 5 تا ویژگی (مثلا ویژگی اول جنسیت و ویِِژگی دوم سن افراد و...) به سیستم آموزش میدم حالا میخوام بفهمم کدومشون درصد بیشتر یا کمتری روی نتیجه پیش بینی داشته !!
از دوستان خواهش میکنم کمک کنید (ضروری)
سلام دوست من

یکی از روش های تعیین اهمیت ویژگی ها PCA هست.
وقتی از این روش استفاده میکنید eigenvalue ها مشخص کننده اهمیت بردار های ویژگی متناظر هستند. هرچقدر این مقدار بزرگتر باشه اهمیت بیشتری هم داره.
در ضمن correlation داده ها میتونه در این زمینه تاثیر گذار باشه. correlation زیاد بین ويژگی تاثیر کم اونها در کلاسبندی رو مشخص میکنه.

همینطور شما میتونید از KLDA برای Project کردن داده ها به فضای جدید استفاده کنید. مسلما در جایی که تفکیک کلاس ها بیشتر باشه اهمیت ویژگی ها نیز خودشونو نشون میدن.

فقط یک نکته دیگه این که با روش feature subset selection میتونید ویژگی های خودتونو با شبکه عصبی ارزیابی کنید. طبیعتا افزایش accuracy شبکه میتونه اهمیت ویژگی ها رو مشخص کنه. ولی این روش جایی مناسبه که بردار ویژگی شما ابعاد کمی داشته باشن.

موفق باشید
babak_1234 آفلاين است   پاسخ با نقل قول
از babak_1234 تشكر كرده اند:
Dark Knight (۰۶-۱۲-۱۳۹۴), hamraaz (۰۹-۲۲-۱۳۹۴), mohamadreza.golab (۰۲-۲۲-۱۳۹۲), ttaheri (۰۸-۴-۱۳۹۲)