تاپيک: clustering
نمايش پست تنها
قديمي ۰۱-۱۵-۱۳۹۰, ۰۸:۲۰ بعد از ظهر   #8 (لینک دائم)
aminkop Male
Active users
 
آواتار aminkop
 
تاريخ عضويت: آبان ۱۳۸۸
پست ها: 45
تشكرها: 7
123 تشكر در 35 پست
پيش فرض

سلام

این روشی که شما مطرح کردین همانطور که دوستمان گفتند روش k-means نیست البته روشی با همان نوع ساختار است بنام splitting LBG است شرط توقف عمومی این الگوریتم هم یک حالت سلسه مراتبی داره و تا پایان یعنی به تعداد همه موارد ادامه پیدا می کنه البته در روش بهبود نیافته این مدل یعنی LBG شرط خاتمه رسیدن به یک اعوجاج کلی که محاسبه نوعی فاصله است ادامه پیدا می کنه.
در کل اگر بخواهید باروشی مانند k-means که باید تعداد خوشه ها مشخص باشه با هر روشی مانند آن که باید تعداد را تعیین کنیم در کاربرد خاصی اطلاع از حدود آن هم نداشته باشید باید مثلا در یک بازه (از 2 تا 10) خوشه بندی را انجام دهید بعد یک معیار عمومی برای کیفیت خوشه حساب کنید و تعیین کنید که کدام خوشه مناسب تر است توجه کنید روش های عمومی محاسبه similarity و disimilarity مناسب نیست و مثلا معیار silhouette coefficient مناسب است و تعیین می کند که چه تعداد خوشه مناسب است.
aminkop آفلاين است   پاسخ با نقل قول
از aminkop تشكر كرده اند:
mehran6644 (۰۱-۱۸-۱۳۹۰), taha_mokfi (۰۱-۱۵-۱۳۹۰)