![]() |
الگوریتم Particle swarm Optimization یا PSO
الگوریتم Particle swarm Optimization یا PSO
PSO حالتی از هوش دسته جمعی مبتنی بر الگوریتم است. راه حلی برای مسئله بهینه سازی در فضای جستجو یا مدل سازی رفتار اجتماعی در هنگام وجود هدفهاست. مرور PSO یک الگوریتم کامپیوتری مبتنی بر جمعیت و کتره ای برای حل مسئله است. PSOیک نوع هوش جمعی مبتنی بر اصول روانشناسی اجتماعی و فراهم آوردن بینشی در رفتار اجتماعی و کمک کردن به کاربردهای مهندسی است. الگوریتمPSO برای اولین بار در 1975 توسط James KennedyوRussell C.Eberhart توصیف شد.این تکنیک ها بسیار رشد کرده اند و نسخه اصلی این الگوریتم به طور واضحی در نسخه های امروزی قابل شناخت است. تاثیر گذاری اجتماعی و یاد گیری اجتماعی یک شخص را قادر می سازد تا ثبات دانستنی هایش را برقرار سازد. انسان ها مسائلشان را به کمک صحبت با دیگران و نیز به کمک برهم کنش با باورهایشان، گرایش هایشان و تغییر رفتارشان حل می کنند؛ این تغییرات را می توان به طور نمونه به شکل حرکت افراد به سوی یکدیگر در فضای آگاهی اجتماعی مجسم کرد. ذرات جمعی شبیه سازی شده ، این نوع از بهینه سازی اجتماعی می باشند.مسئله داه شده و چند راه برای ارزیابی مسئله پیشنهادی به ..... در شکل کلی "تابع شایستگی"حضور دارند.ساختار ارتباطی یا شبکه اجتماعی برای واگذار کردن هر همسایگی به یک فرد تعریف شده تا آن فرد با آن همسایگی بر هم کنش داشته باشد.سپس گروه کارگزاران به عنوان مهمان های سرزده برای راه حل های مسئله تعریف می شوند که آنها را به نام "ذرات" نیز می شناسیم؛ از این رو آنها را "ذرات دسته جمعی" نام نهاده ایم. یک فرایند تکراری برای بهبود کاندیدا ها در طی حرکت ذرات در نظر گرفته شده است. ذرات مکررا شایستگی راه حل های کاندیدا را ارزیابی می کنند و موقعیتی را که در آن بهترین موفقیت را داشته اند ، به خاطر می سپارند. بهره راه حل کارگزاران "بهترین ذره" یا "بهترین محل" نامیده می شود. هر ذره این اطلاعات را برای دیگر ذرات موجود در همسایگی قابل دسترسی می کند. همچنین آنها نیز می توانند ببینند که دیگر ذرات موجود در همسایگی در کجا بهترین موفقیت را داشته اند. رکت ها در فضای جستجو بوسیله ی موفقیت های قبلی ؛ با افرادی که بیشتر مواقع همگرایی دارند، سرانجام بهتر از حالتی است که نزدیک شدن به جواب بوسیله عواملی فاقد هوش جمعی ولی با همین روش صورت گیرد. گروه به صورت نمونه بوسیله ذرات در فضای چند بعدی که مکان و سرعت دارد، مدل سازی می شود. این ذرات در میان این ابر فضا(فضای دارای بیش از سه بعد) پرواز می کنند و دو توانایی ضرورری دارند: 1-حافظه ای برای ذخیره سازی بهترین مکان خود2-آگاهی در مورد بهترین موقعیت در همسایگی خود یا در کل فضای پاسخ ها اعضای دسته جمعی مکان های خوب را به یکدیگر از طریق ارتباط انتقال می دهند و موقعیت و سرعتشان را با مکان های خوب تنظیم می کنند. هر ذره برای اعمال تغییری مناسب در مکان و سرعت خود اطلاعات زیر را دارا می باشد: 1-"بهترین عمومی" که برای همه شناخته شده است و هنگامی که هر ذره بهترین مکان جدیدی را شناسایی کند، فورا برای بقیه ذرات اطلاعات مربوطه را به روز رسانی می کند. 2-"بهترین همسایگی"که ذره از طریق ارتباط با زیر مجموعه های گروه ، آنرا بدست می آورد. 3-"بهترین محلی"که بهترین راه حلی است که ذره تا کنون تجربه کرده است. همه ذرات شروع به تاثیر پذیری از "بهترین عمومی" می کنند تا سرانجام به آن نزدیک شوند. ذرات در فضای جستجو در نزدیکی "بهترین عمومی" سیر می کنند و بقیه فضا را کاوش نمی کنند ، به این پدیده"همگرایی" گفته می شود. اگر ضریب اینرسی سرعت را کوچک انتخاب کنیم، تمام ذرات می توانند سرعتشان را کاهش دهند تا اینکه در "بهترین عمومی" به سرعت صفر نزدیکتر شوند. یک را خروج از وضعیت همگرایی اولیه(نامطلوب) این است که دوباره به موقعیت ذرات (پس از رخ دادن همگرایی )مقدار اولیه بدهیم. |
الگوریتم پرندگان یا اجتماع ذرات چیست؟
الگوریتم پرندگان یا اجتماع ذرات چیست؟
:48: عبارت Swarm در زبان انگلیسی به اجتماع دسته انبوهی از جانوران و حشرات اشاره می کند. در زیر یک swarm از زنبور ها را می بینید. اگر سرعت اینترنتتان مناسب باشد، می توانید حرکت یک swarm از ماهی ها را در زیر ببینید. جهت حفظ امانت، لازم به ذکر است که تصویر متحرک زیر از ویکیپدیا گرفته شده است. ايده Particle Swarm Optimization، براي اولين بار توسط کندي و ابرهارت در سال 1995 مطرح شد. PSO، يک الگوريتم محاسبه اي تکاملي الهام گرفته از طبيعت و براساس تکرار ميباشد. منبع الهام اين الگوريتم، رفتار اجتماعي حيوانات، همانند حرکت دسته جمعي پرندگان و ماهيها بود. از اين جهت که PSO نيز با يک ماتريس جمعيت تصادفي اوليه، شروع ميشود، شبيه بسیاری دیگر از الگوریتم های تکاملی همچون الگوريتم ژنتيک پيوسته و الگوریتم رقابت استعماری است. برخلاف الگوریتم ژنتیک ، PSO هيچ عملگر تکاملي همانند جهش و تزويج ندارد. از این جهت می شود گفت که الگوریتم رقابت استعماری شباهت بیشتری به PSO دارد تا به GA. هر عنصر جمعيت، يک ذره ناميده ميشود (که همان معادل کروموزوم در GA و یا کشور در الگوریتم رقابت استعماری) است. در واقع الگوريتم PSO از تعداد مشخصي از ذرات تشکيل مي-شود که به طور تصادفي، مقدار اوليه مي گيرند. براي هر ذره دو مقدار وضعيت و سرعت، تعريف مي شود که به ترتيب با يک بردار مکان و يک بردار سرعت، مدل ميشوند. اين ذرات، بصورت تکرارشونده اي در فضاي nـبعدي مسئله حرکت مي کنند تا با محاسبة مقدار بهينگي به عنوان يک ملاک سنجش، گزينههاي ممکن جديد را جستجو کنند. بُعد فضاي مسئله، برابر تعداد پارامترهاي موجود در تابع مورد نظر براي بهينه سازي مي باشد. يک حافظه به ذخيرة بهترين موقعيت هر ذره در گذشته و يک حافظه به ذخيرة بهترين موقعيت پيش آمده در ميان همة ذرات، اختصاص مييابد. با تجربة حاصل از اين حافظه ها, ذرات تصميم مي گيرند که در نوبت بعدي، چگونه حرکت کنند. در هر بار تکرار، همة ذرات در فضاي nـبعدي مسئله حرکت مي¬کنند تا بالاخره نقطة بهينة عام، پيدا شود. ذرات، سرعتهايشان و موقعيتشان را بر حسب بهترين جوابهاي مطلق و محلي بهروز ميکنند. يعني http://artificial3.persiangig.com/image/chart.png http://artificial3.persiangig.com/image/chart%20(1).png که در آن http://chart.apis.google.com/chart?c...%7Bm%2Cn%7D%7D، سرعت ذره http://chart.apis.google.com/chart?c...%7Bm%2Cn%7D%7D، متغيرهاي ذره http://chart.apis.google.com/chart?c...5C%2C%7Br_2%7D، اعداد تصادفي مستقل با توزيع يکنواخت http://chart.apis.google.com/chart?c...%20_2%7D%5C%2C، فاکتورهاي يادگيري http://chart.apis.google.com/chart?c...l%5C%2Cbest%7D، بهترين جواب محلي http://chart.apis.google.com/chart?c...l%5C%2Cbest%7D، بهترين جواب مطلق ميباشند. الگوريتم PSO، بردار سرعت هر ذره را بهروز کرده و سپس مقدار سرعت جديد را به موقعيت و يا مقدار ذره ميافزايد. بهروز کردنهاي سرعت، تحت تأثير هر دو مقدار بهترين جواب محلي و بهترين جواب مطلق قرار ميگيرند. بهترين جواب محلي و بهترين جواب مطلق، بهترين جوابهايي هستند که تا لحظهي جاري اجراي الگوريتم، به ترتيب توسط يک ذره و در کل جمعيت به دست آمدهاند. ثابتهاي http://chart.apis.google.com/chart?c...CGamma%20_1%7D و http://chart.apis.google.com/chart?c...%20_2%7D%5C%2C به ترتيب، پارامتر ادراکي و پارامتر اجتماعي ناميده ميشوند. مزيت اصلي PSO اين است که پيادهسازي اين الگوريتم ساده بوده و نياز به تعيين پارامترهاي کمي دارد. همچنين PSO قادر به بهينهسازي توابع هزينهي پيچيده با تعداد زياد مينيمم محلي است. |
سلام دوستان عزیز بنده می خواستم یک شبکه برق با چندشین رو با الگوریتم pso طراحی بکنم برای شبیه سازی حالا نمیدونم چه جوری و از کجا باید شروع بکنم لطفا من رو راهنمایی بکنید. خیلی ممنون میشم من رو یاری بدید
|
زمان محلي شما با تنظيم GMT +3.5 هم اکنون ۰۱:۰۶ قبل از ظهر ميباشد. |
Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.1.0 ©2007, Crawlability, Inc.