تشخيص خودكار خوشه هاي ميكروكلسيفيكاسيون به كمك تبديل موجك و شبكه هاي عصبي
تشخيص خودكار خوشه هاي ميكروكلسيفيكاسيون به كمك تبديل موجك و شبكه هاي عصبي
چکيده:
در اين مقاله، يك سيستم cad به منظور شناسايى و تشخيص خوشه هاى ميكروكلسيفيكاسيون در تصاوير ماموگرافى معرفى شده است. الگوريتم معرفى شده مركب از سه مرحله اساسى است. در مرحله اول، تبديل موجك روى تصاوير ماموگرافى اعمال شده و دو ضريب موجك به همراه دو ويژگى آمارى به عنوان ويژگى هاى متمايز كننده پيكسل ها از نظر تعلق به يك دانه ميكروكلسيفيكاسيون استخراج مى گردد. سپس با استفاده از يك شبكه عصبى، دسته بندى اوليه پيكسل ها انجام مى شود. در مرحله دوم الگوريتم، پس از حذف پيكسل هاى نويزى حاصل از مرحله اول، اجسام باقيمانده از نظر مطابقت با يك دانه ميكروكلسيفيكاسيون مورد بررسى قرار مى گيرد. به اين منظور، از 18 ويژگى تعريف شده براى هر دانه ميكروكلسيفيكاسيون، و يك دسته بندى كننده غيرخطى استفاده شده و دانه هاى ميكروكلسيفيكاسيون با دقت خوبى شناسايى مى شود. براى آموزش اين دسته بندى كننده، از 16 ناحيه حاوى ميكروكلسيفيكاسيون هاى بدست آمده از تصاوير پايگاه داده اى كه مجموعا شامل 379 ميكروكلسيفيكاسيون بودند استفاده شده است. در مرحله سوم، با استفاده از 5 ويژگى مربوط به خوشه هاى ميكروكلسيفيكاسيون و يك شبكه عصبى، در مورد بدخيمى خوشه هاى ميكروكلسيفيكاسيون قضاوت به عمل مى آيد. براى آموزش اين شبكه عصبى از 22 خوشه كه از 14 خوشه خوش خيم و 8 خوشه بدخيم تشكيل شده بودند استفاده شد. براى سنجش كارآيى سيستم نيز 22 خوشه ديگر كه در مرحله آموزش از آنها استفاده نشده بود و شامل 10 خوشه خوش خيم و 12 خوشه بد خيم بودند، به سيستم اعمال شد. با اعمال تصاوير فوق، اين سيستم در مقدار آستانه 0.45 مقدار حساسيت 100% و مقدار خصوصيت 91.6% از خود نشان داد. با توجه به اين مقادير مى توان قابليت مناسب الگوريتم ايجاد شده را تاييد نمود.
کليدواژگان:
ماموگرافي، ميكروكلسيفيكاسيون، تشخيص خودكار تصاوير ماموگرافي، شبكه هاي عصبي مصنوعي، پردازش تصوير، تبديل موجك
|