Artificial Intelligence - هوش مصنوعی  
انجمن را در گوگل محبوب کنيد :

بازگشت   Artificial Intelligence - هوش مصنوعی > الگوریتم ها > الگوريتم بهينه سازي فاخته (Cuckoo Optimization Algorithm)


 
تبليغات سايت
Iranian Association for the Advancement of Artificial Intelligence
ارسال تاپيک جديد  پاسخ
 
LinkBack ابزارهاي تاپيک نحوه نمايش
قديمي ۰۹-۴-۱۳۹۳, ۰۶:۳۲ بعد از ظهر   #1 (لینک دائم)
Active users
 
آواتار ramin4251
 
تاريخ عضويت: مهر ۱۳۸۸
پست ها: 133
تشكرها: 1
75 تشكر در 38 پست
My Mood: Shad
پيش فرض Robust data-driven soft sensor based on iteratively weighted least squares support ve

Robust data-driven soft sensor based on iteratively weighted least
squares support vector regression optimized by the cuckoo optimization algorithm




abstract
In process industries, use of the data-driven soft sensors for the purpose of process control and monitoring has gained much popularity. Data-driven soft sensors infer the process quality variables from the available historical process data. A considerable amount of process data such as pressures, temperatures, etc., are measured routinely and stored permanently. However, the quality of these data often varies.
Measurement noises and data outliers are the most common effects which lead to poor quality of process data. Application of standard statistical techniques to operate data may lead to model deterioration due to contaminating observations. Therefore, the objective of this paper is to present a robust approach for the development of data-driven soft sensors. In this paper, the modeling method that is used to develop soft sensor is a combination of Nonlinear Auto Regressive with eXogenous inputs (NARX) structure with Least Squares Support Vector Regression (LSSVR). The LSSVRs' parameters are optimized by a new
evolutionary optimization technique known as the Cuckoo Optimization Algorithm (COA). Then in order to make the soft sensor robust against the data outliers and noises especially the long tail noises, a new approach is proposed. The proposed method is based on the Iteratively Weighted LSSVR (IWLSSVR) which uses the Myriad weighting function. The proposed approach was applied to the prediction of the n-butane (C4) concentration in a debutanizer column unit. The technique was consequently compared against the conventional LSSVR algorithm which is based on the quadratic loss function. It turns out that reweighting the LSSVR estimate using the Myriad weight function improves the performance of the LSSVR-based soft sensor when noises and outliers exist in the measured data. The designed robust soft sensor is also compared with another robust soft sensor which is recently developed based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) optimized by the Particle Swarm Optimization (PSO).
The simulation results show that the designed IWLSSVR-based soft sensor is more robust when the measured data have some impurities.

دانلود فايل مقاله
__________________
www.matlabpajooh.ir
matlab.proj@gmail.com

بروزترين مطالب در مورد الگوريتم بهينه سازي فاخته در:
https://telegram.me/cuckoo_optimization_algorithm

ويرايش شده توسط ramin4251; ۰۱-۳۱-۱۳۹۵ در ساعت ۱۱:۲۵ قبل از ظهر
ramin4251 آفلاين است   پاسخ با نقل قول

  #ADS
نشان دهنده تبلیغات
تبليغگر
 
 
 
تاريخ عضويت: -
محل سكونت: -
سن: 2010
پست ها: -
 

نشان دهنده تبلیغات is online  
پاسخ



كاربران در حال ديدن تاپيک: 1 (0 عضو و 1 مهمان)
 

قوانين ارسال
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is فعال
شکلکها فعال است
كد [IMG] فعال است
كدهاي HTML غير فعال است
Trackbacks are فعال
Pingbacks are فعال
Refbacks are فعال




زمان محلي شما با تنظيم GMT +3.5 هم اکنون ۰۵:۴۲ بعد از ظهر ميباشد.


Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.1.0 ©2007, Crawlability, Inc.

Teach and Learn at Hexib | Sponsored by www.Syavash.com and Product In Review

استفاده از مطالب انجمن در سایر سایت ها، تنها با ذکر انجمن هوش مصنوعي به عنوان منبع و لینک مستقیم به خود مطلب مجاز است

Inactive Reminders By Icora Web Design