Artificial Intelligence - هوش مصنوعی  
انجمن را در گوگل محبوب کنيد :

بازگشت   Artificial Intelligence - هوش مصنوعی > مقالات و اسلاید ها > مقالات و اسلایدهای فارسی مرتبط با هوش مصنوعی


 
تبليغات سايت
Iranian Association for the Advancement of Artificial Intelligence
ارسال تاپيک جديد  پاسخ
 
LinkBack ابزارهاي تاپيک نحوه نمايش
قديمي ۰۴-۸-۱۳۹۲, ۰۵:۵۳ بعد از ظهر   #1 (لینک دائم)
عضو فعال
 
آواتار dbdb2458
 
تاريخ عضويت: خرداد ۱۳۹۲
پست ها: 17
تشكرها: 9
0 تشكر در 0 پست
پيش فرض

خیلی خیلی خیلی خیلی ممنون
اگه تا یه هفته هم دنبالش میگشم نمی تونستم مفهومش رو بفهمم
راستش من نمیخام زیاد روی این قضه کار کنم فقط مفهومش برام مهم بود
ولی یه سری سوالای دیگه هم دارم میتونم مطرح کنم ؟
dbdb2458 آفلاين است   پاسخ با نقل قول

  #ADS
نشان دهنده تبلیغات
تبليغگر
 
 
 
تاريخ عضويت: -
محل سكونت: -
سن: 2010
پست ها: -
 

نشان دهنده تبلیغات is online  
قديمي ۰۴-۸-۱۳۹۲, ۰۶:۴۱ بعد از ظهر   #2 (لینک دائم)
عضو فعال
 
آواتار dbdb2458
 
تاريخ عضويت: خرداد ۱۳۹۲
پست ها: 17
تشكرها: 9
0 تشكر در 0 پست
پيش فرض

The results suggest that
the proposed Bayesian-LSSVM has stronger generalization
ability than does BP-ANN in small sample data modeling. The
weakness of conventional ERM, on which BP-ANN is based,
was exposed. Values generated using a gradient descent algorithm fell easily into local optimum. However, the proposed
model was equivalent to solving convex quadratic programming with linear constraints, and the solution was unique and
global optimum.

منظور از generalization و gradient descent algorithm fell easily into local optimum چیه؟
ممنونم
ability
dbdb2458 آفلاين است   پاسخ با نقل قول
قديمي ۰۴-۸-۱۳۹۲, ۰۶:۵۸ بعد از ظهر   #3 (لینک دائم)
Super Moderator
 
آواتار raha_hakhamanesh
 
تاريخ عضويت: خرداد ۱۳۸۷
محل سكونت: دنیا
پست ها: 281
تشكرها: 28
253 تشكر در 147 پست
My Mood: Zodranj
پيش فرض

نقل قول:
نوشته اصلي بوسيله dbdb2458 نمايش پست
The results suggest that the proposed Bayesian-LSSVM has stronger generalization ability than does BP-ANN in small sample data modeling.
The weakness of conventional ERM, on which BP-ANN is based, was exposed.
Values generated using a gradient descent algorithm fell easily into local optimum. However, the proposed model was equivalent to solving convex quadratic programming with linear constraints, and the solution was unique and global optimum.

منظور از generalization و gradient descent algorithm fell easily into local optimum چیه؟
ممنونم
ability
generalization
روش ارائه شده قدرت تعمیم بیشتری در مدلسازی داده های نمونه کوچک را دارد.
یعنی: روش ارائه شده می تواند نتایج بهتری در داده های با نمونه کم داشته باشه بعبارتی وقتی بر حسب مشکلات، مسئله دچار کمبود نمونه آموزشی است این روش کارآمدتر است.

Values generated using a gradient descent algorithm fell easily into local optimum
مقادیر تولید شده بوسیله الگوریتم Gradient Descent بسادگی در بهینه محلی به دام می افتد.
یعنی این روش توانایی این را ندارد که از بهینه محلی فرار کند دقیقا مثل آن چیزی که در الگوریتم ژنتیک با جهش سعی می کنیم از آن جلوگیری کنیم. بعبارتی در یک رویه تکراری در حال بهبود نتایج هستیم که این بهبود نتایج ممکن است منجر به رسیدن به یک قله محلی شود در حالیکه ما علاقه مندیم به بهینه عمومی برسیم لذا این جمله صریحا بیان می کند که Gradient Descent نمی تواند از به دام افتادن در بهینه محلی جلوگیری کند (که البته بدیهی است چون دانشی ندارد)

موفق باشید
__________________
.
.
.
برای تشکر دکمه مخصوص وجود دارد لطفا پست هرز ایجاد نکنید
.
.
اینقدر از دسترسی نداشتن به مقاله شیون نکنید

مقالات انگلیسی: ایران سای (ISI, IEEE, ACM)
مقالات فارسی: سیویلیکا (کنفرانس داخلی)
مقالات فارسی: مگ ایران (ژورنالهای داخلی)
raha_hakhamanesh آفلاين است   پاسخ با نقل قول
از raha_hakhamanesh تشكر كرده است:
dbdb2458 (۰۴-۸-۱۳۹۲)
قديمي ۰۴-۸-۱۳۹۲, ۰۷:۰۷ بعد از ظهر   #4 (لینک دائم)
عضو فعال
 
آواتار dbdb2458
 
تاريخ عضويت: خرداد ۱۳۹۲
پست ها: 17
تشكرها: 9
0 تشكر در 0 پست
پيش فرض

چطوری باید دو تا الگوریتم رو با هم مقایسه کرد؟
روش support vector regression رو میشه واسه پیش بینی یه سری زمانی هم استفاده کرد؟
چه فرقی بین SVM و SVR هست؟

(( First, the LSSVM regression machine established a nonlinear mapping function ,
and then the input space was mapped into higher dimensional
feature space-Euclidean space or Hibert space. The input data
were classified by optimal linear transformation, and the decision function could be obtained based on the transformed data
in feature space. Thus, ))

این جمله از مقالست و میشه بگید چرا فضای ویژگی رو میبره به یه فضای با ابعاد بالاتر؟
dbdb2458 آفلاين است   پاسخ با نقل قول
پاسخ



كاربران در حال ديدن تاپيک: 1 (0 عضو و 1 مهمان)
 

قوانين ارسال
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is فعال
شکلکها فعال است
كد [IMG] فعال است
كدهاي HTML غير فعال است
Trackbacks are فعال
Pingbacks are فعال
Refbacks are فعال




زمان محلي شما با تنظيم GMT +3.5 هم اکنون ۱۰:۲۷ بعد از ظهر ميباشد.


Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.1.0 ©2007, Crawlability, Inc.

Teach and Learn at Hexib | Sponsored by www.Syavash.com and Product In Review

استفاده از مطالب انجمن در سایر سایت ها، تنها با ذکر انجمن هوش مصنوعي به عنوان منبع و لینک مستقیم به خود مطلب مجاز است

Inactive Reminders By Icora Web Design